Introduction
Kafka Connect allows you to continuously ingest data from external systems into Kafka via connect sources and write data from Kafka to external system via connect sinks.
Various plugins are available for a variety of different data sources and data sinks.
Single Message Transformations (SMTs) are applied to messages as they flow through Connect.
Connect Demo
Postgres JDBC Sink Connector (Confluent)
Prepare the connector image
Download the JDBC sink connector from JDBC Connector (Source and Sink)
Create a docker file for this connector
FROM quay.io/strimzi/kafka:0.32.0-kafka-3.3.1 USER root:root RUN mkdir -p /opt/kafka/plugins/jdbc COPY ./confluentinc-kafka-connect-jdbc-10.6.0.zip /opt/kafka/plugins/j dbc/ RUN unzip /opt/kafka/plugins/jdbc/confluentinc-kafka-connect-jdbc-10.6.0.zip -d /opt/kafka/plugins/jdbc RUN rm /opt/kafka/plugins/jdbc/confluentinc-kafka-connect-jdbc-10.6.0.zip USER 1001
Build the image and copy it to your docker repository
docker build -f Dockerfile . t ktimoney/strimzi connector
Prepare the postges database
Setup a new username/password and schema for Kafka connect to write to
SELECT 'CREATE DATABASE kafka' WHERE NOT EXISTS (SELECT FROM pg_database WHERE datname = 'kafka')\gexec DO $$ BEGIN IF NOT EXISTS (SELECT FROM pg_user WHERE usename = 'kafka') THEN CREATE USER kafka WITH PASSWORD 'kafka'; GRANT ALL PRIVILEGES ON DATABASE kafka TO kafka; END IF; END $$;
Prepare the message producer
In this example we are going to deserialize the kafka key and value to json, for this to work we need to include the json schema with the message.
They will take the following format:
{ "schema": { "type": "struct", "optional": false, "version": 1, "fields": [ { "field": "id", "type": "string", "optional": true } ] }, "payload": { "id": 1 } }
The above structure can be represented in golang using the following structs:
type SchemaPayload[T any] struct { Schema Schema `json:"schema"` Payload T `json:"payload"` } type Schema struct { Type string `json:"type"` Optional bool `json:"optional"` Version int `json:"version"` Fields []Fields `json:"fields"` } type Fields struct { Field string `json:"field"` Type string `json:"type"` Optional bool `json:"optional"` } type KeyPayload struct { Id string `json:"id"` } type ValuePayload struct { Text string `json:"text"` }
We can use the same SchemaPayload struct for both keys and values, we only need to provide the Payload struct type we initialize it with.
Create the KafkaConnect object
apiVersion: kafka.strimzi.io/v1beta1 kind: KafkaUser metadata: name: connect namespace: kafka labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls --- apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster namespace: kafka annotations: # use-connector-resources configures this KafkaConnect # to use KafkaConnector resources to avoid # needing to call the Connect REST API directly strimzi.io/use-connector-resources: "true" spec: image: ktimoney/strimzi-connect replicas: 1 bootstrapServers: my-cluster-kafka-bootstrap:9093 tls: trustedCertificates: - secretName: my-cluster-cluster-ca-cert certificate: ca.crt - secretName: my-cluster-clients-ca-cert certificate: ca.crt authentication: type: tls certificateAndKey: secretName: connect certificate: user.crt key: user.key config: group.id: connect-cluster offset.storage.topic: connect-cluster-offsets config.storage.topic: connect-cluster-configs status.storage.topic: connect-cluster-status # -1 means it will use the default replication factor configured in the broker config.storage.replication.factor: -1 offset.storage.replication.factor: -1 status.storage.replication.factor: -1
We are connecting to the 9093 tls port so we include required certificates in our configuration.
The image tag references the image we built earlier : ktimoney/strimzi-connect
Create the Sink connector
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-sink-connector namespace: kafka labels: strimzi.io/cluster: my-connect-cluster spec: class: io.confluent.connect.jdbc.JdbcSinkConnector tasksMax: 2 config: topics: my-topic connection.url: jdbc:postgresql://postgres.default:5432/kafka connection.user: kafka connection.password: kafka key.converter: org.apache.kafka.connect.json.JsonConverter value.converter: org.apache.kafka.connect.json.JsonConverter key.converter.schemas.enable: true value.converter.schemas.enable: true pk.mode: record_key pk.fields: id auto.create: true delete.enabled: true
The KafkaConnector is configured to use the "io.confluent.connect.jdbc.JdbcSinkConnector" class.
The converters are set to "org.apache.kafka.connect.json.JsonConverter"
The pk.mode is set to "record_key" and pk.fields is set to "id", this means it will use the id field from the key as the primary key.
The database connection details are also included.
Influxdb Sink Connector (Apache Camel)
Prepare the connector image
Download the Influxdb connector: wget https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-influxdb-kafka-connector/0.8.0/camel-influxdb-kafka-connector-0.8.0-package.tar.gz
Create a docker file for this connector
FROM quay.io/strimzi/kafka:0.22.1-kafka-2.7.0 USER root:root RUN mkdir -p /opt/kafka/plugins/camel COPY ./camel-influxdb-kafka-connector-0.8.0-package.tar.gz /opt/kafka/plugins/camel/ RUN tar -xvzf /opt/kafka/plugins/camel/camel-influxdb-kafka-connector-0.8.0-package.tar.gz --directory /opt/kafka/plugins/camel RUN rm /opt/kafka/plugins/camel/camel-influxdb-kafka-connector-0.8.0-package.tar.gz USER 1001
Build the image and copy it to your docker repository
docker build -f Dockerfile . t ktimoney/strimzi_influxdb_connector
Prepare the message producer
In this example we are going to deserialize the value to json, we can do this without using a schema.
They will take the following format:
{ "camelInfluxDB.MeasurementName":"disk_space" "time":"2023-01-23T13:03:31Z" "host":"localhost" "region":"IE-region" "used":"19%" "free":"81%" }
The important thing to note here is that one of the "keys" has to be "camelInfluxDB.MeasurementName", this is required by the camel transformer when converting into an influxdb point object.
The above structure can be represented in golang using the following struct:
type InfluxPayload struct { Measurement string `json:"camelInfluxDB.MeasurementName"` Time string `json:"time"` Host string `json:"host"` Region string `json:"region"` Used string `json:"used"` Free string `json:"free"` }
Create the KafkaConnect object
apiVersion: kafka.strimzi.io/v1beta1 kind: KafkaUser metadata: name: connect namespace: kafka labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls --- apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster namespace: kafka annotations: # use-connector-resources configures this KafkaConnect # to use KafkaConnector resources to avoid # needing to call the Connect REST API directly strimzi.io/use-connector-resources: "true" spec: image: ktimoney/strimzi-influxdb-connect replicas: 1 bootstrapServers: my-cluster-kafka-bootstrap:9093 tls: trustedCertificates: - secretName: my-cluster-cluster-ca-cert certificate: ca.crt - secretName: my-cluster-clients-ca-cert certificate: ca.crt authentication: type: tls certificateAndKey: secretName: connect certificate: user.crt key: user.key config: group.id: connect-cluster offset.storage.topic: connect-cluster-offsets config.storage.topic: connect-cluster-configs status.storage.topic: connect-cluster-status offset.storage.topic: my-connect-cluster-offsets config.storage.topic: my-connect-cluster-configs status.storage.topic: my-connect-cluster-status config.storage.replication.factor: 1 offset.storage.replication.factor: 1 status.storage.replication.factor: 1
We are connecting to the 9093 tls port so we include required certificates in our configuration.
The image tag references the image we built earlier : ktimoney/strimzi-influx-connect
Create the Sink connector
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-sink-connector namespace: kafka labels: strimzi.io/cluster: my-connect-cluster spec: class: org.apache.camel.kafkaconnector.influxdb.CamelInfluxdbSinkConnector tasksMax: 1 config: topics: my-topic errors.deadletterqueue.topic.name: my-topic-dl errors.deadletterqueue.topic.replication.factor: 1 key.converter: org.apache.kafka.connect.storage.StringConverter value.converter: org.apache.kafka.connect.json.JsonConverter key.converter.schemas.enable: false value.converter.schemas.enable: false key.ignore: true auto.create: true camel.beans.influx: "#class:org.influxdb.InfluxDBFactory#connect('http://influxdb.default:8086', 'influxdb', 'influxdb')" camel.sink.path.connectionBean: influx camel.sink.endpoint.databaseName: ts_host_metrics camel.sink.endpoint.operation: insert camel.sink.endpoint.retentionPolicy: autogen
The KafkaConnector is configured to use the "org.apache.camel.kafkaconnector.influxdb.CamelInfluxdbSinkConnector" class.
The value converter are set to "org.apache.kafka.connect.json.JsonConverter".
The camel connector comes with a in built TypeConverter called CamelInfluxDbConverters which will read the json produced as a Map<String, Object> map) and return an Influxdb Point object.
The database connection details are specified in camel.beans.influx.
This sets up a connection bean to be used by camel.sink.path.connectionBean.
Note: It is important to wrap the camel.beans.influx parameter in quotes otherwise it will be treated as a comment.
The yaml for the influxdb pod is available here: influxdb.yaml
When the connector is running it will produce records to influxdb like the following:
{'pretty': 'true', 'db': 'ts_host_metrics', 'q': 'SELECT "region", "host", "free", "used" FROM "disk_space" WHERE "host"=\'localhost\''} { "results": [ { "statement_id": 0, "series": [ { "name": "disk_space", "columns": [ "time", "region", "host", "free", "used" ], "values": [ [ "2023-01-23T13:03:32.1246436Z", "IE-region", "localhost", "81%", "19%" ] ] } ] } ] }
Minio Sink Connector (Apache Camel)
Prepare the connector image
Download the minio sink connector: wget https://repo.maven.apache.org/maven2/org/apache/camel/kafkaconnector/camel-file-kafka-connector/3.20.0/camel-file-kafka-connector-3.20.0-package.tar.gz
We need to create some custom classes:
CamelMinioConverters.java - this will allow us to deserialize to json and convert the hashmap to an inputstream
package com.custom.convert.minio; import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.ObjectMapper; import java.io.ByteArrayInputStream; import java.io.InputStream; import java.util.Map; import org.apache.camel.Converter; @Converter(generateLoader = true) public final class CamelMinioConverters { private CamelMinioConverters() { } @SuppressWarnings("deprecation") @Converter public static InputStream fromMapToInputStream(Map<String, Object> map) { String json = "{}"; try { json = new ObjectMapper().writeValueAsString(map); } catch (JsonProcessingException e) { e.printStackTrace(); } return new ByteArrayInputStream(json.getBytes()); } }
StringAggregator.java - this will allow us to aggregate the messages and set the file name
package com.custom.aggregate.minio; import java.text.SimpleDateFormat; import java.util.Date; import java.util.HashMap; import java.util.Map; import org.apache.camel.AggregationStrategy; import org.apache.camel.Exchange; import org.apache.camel.Message; public class StringAggregator implements AggregationStrategy { //@Override public Exchange aggregate(Exchange oldExchange, Exchange newExchange) { Message newIn = newExchange.getIn(); Map<String, String> keyMap = (HashMap) newIn.getHeaders().get("camel.kafka.connector.record.key"); String key = keyMap.get("id"); SimpleDateFormat sdf = new SimpleDateFormat("ddMMyy-hhmmss-SSS"); String fileName = "ExchangeKafka-" + key + "-" + sdf.format( new Date() ); newIn.setHeader("file", fileName); // lets append the old body to the new body if (oldExchange == null) { return newExchange; } String body = oldExchange.getIn().getBody(String.class); if (body != null) { String newBody = newIn.getBody(String.class); if (newBody != null) { body += System.lineSeparator() + newBody; } newIn.setBody(body); } return newExchange; } }
We can then create a custom jar for our code and copy it into the docker container.
Create a docker file for this connector
FROM quay.io/strimzi/kafka:0.32.0-kafka-3.3.1 USER root:root RUN mkdir -p /opt/kafka/plugins/camel COPY ./camel-minio-sink-kafka-connector-3.20.0-package.tar.gz /opt/kafka/plugins/camel/ RUN tar -xvzf /opt/kafka/plugins/camel/camel-minio-sink-kafka-connector-3.20.0-package.tar.gz --directory /opt/kafka/plugins/camel COPY ./custom-converter-1.0.0.jar /opt/kafka/plugins/camel/camel-minio-sink-kafka-connector/ RUN rm /opt/kafka/plugins/camel/camel-minio-sink-kafka-connector-3.20.0-package.tar.gzRUN rm -rf /opt/kafka/plugins/camel/docs USER 1001
Build the image and copy it to your docker repository
docker build -f Dockerfile . t ktimoney/strimzi_minio_connector
Prepare the message producer
In this example we are going to deserialize the value to a string. (Same producer as the influxdb example)
They will take the following format:
{ "camelInfluxDB.MeasurementName":"disk_space" "time":"2023-01-23T13:03:31Z" "host":"localhost" "region":"IE-region" "used":"19%" "free":"81%" }
With the type converter n place we can also deserialize as a json object.
They key will be a json that loos like this: {"id":"119"}
Create the KafkaConnect object
apiVersion: kafka.strimzi.io/v1beta1 kind: KafkaUser metadata: name: connect namespace: kafka labels: strimzi.io/cluster: my-cluster spec: authentication: type: tls --- apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnect metadata: name: my-connect-cluster namespace: kafka annotations: # use-connector-resources configures this KafkaConnect # to use KafkaConnector resources to avoid # needing to call the Connect REST API directly strimzi.io/use-connector-resources: "true" spec: image: ktimoney/strimzi-minio-connect replicas: 1 bootstrapServers: my-cluster-kafka-bootstrap:9093 tls: trustedCertificates: - secretName: my-cluster-cluster-ca-cert certificate: ca.crt - secretName: my-cluster-clients-ca-cert certificate: ca.crt authentication: type: tls certificateAndKey: secretName: connect certificate: user.crt key: user.key config: group.id: connect-cluster offset.storage.topic: connect-cluster-offsets config.storage.topic: connect-cluster-configs status.storage.topic: connect-cluster-status offset.storage.topic: my-connect-cluster-offsets config.storage.topic: my-connect-cluster-configs status.storage.topic: my-connect-cluster-status config.storage.replication.factor: 1 offset.storage.replication.factor: 1 status.storage.replication.factor: 1
We are connecting to the 9093 tls port so we include required certificates in our configuration.
The image tag references the image we built earlier : ktimoney/strimzi-minio-connect
Create the Sink connector
apiVersion: kafka.strimzi.io/v1beta2 kind: KafkaConnector metadata: name: my-sink-connector namespace: kafka labels: strimzi.io/cluster: my-connect-cluster spec: class: org.apache.camel.kafkaconnector.miniosink.CamelMiniosinkSinkConnector tasksMax: 1 config: topics: my-topic key.converter: org.apache.kafka.connect.json.JsonConverter value.converter: org.apache.kafka.connect.storage.StringConverter key.converter.schemas.enable: false value.converter.schemas.enable: false camel.beans.aggregate: "#class:com.custom.aggregate.minio.StringAggregator" camel.aggregation.size: 1 camel.aggregation.timeout: 20000 camel.aggregation.disable: false camel.kamelet.minio-sink.bucketName: camel camel.kamelet.minio-sink.accessKey: ybK7RleFUkdDeYBf camel.kamelet.minio-sink.secretKey: X0Y4zK84bwdefRTljrnPzOb1l0A6OQj2 camel.kamelet.minio-sink.endpoint: http://minio.default:9000 camel.kamelet.minio-sink.autoCreateBucket: true
The KafkaConnector is configured to use the "org.apache.camel.kafkaconnector.miniosink.CamelMiniosinkSinkConnector class.
The value converter are set to "org.apache.kafka.connect.storage.StringConverter".
The minio connection details are specified in camel.kamelet.minio-sink parameters.
The aggregation size is set to 1 so it won't aggregate any of the files
This timeout is also specified so it will only aggregate records arriving within this time out value (20 seconds).
These values can be adjusted depending on your requirements.
The main purpose of the aggregator in this example is for setting the file name, this is done by setting a header with a key of "file".
The yaml for the minio pod is available here: minio.yaml
When the connector is running it copies the kafka records into minio as files:
Here's a screen shot where we are using the aggregator to set the file name:
Links
Building your own Kafka Connect image with a custom resource
Kafka Connect Deep Dive – Converters and Serialization Explained
How to Write a Connector for Kafka Connect – Deep Dive into Configuration Handling
Camel Kafka Connector Examples
Camel Kafka Connect Maven Repository