New usecase - UAV Path Prediction
UAV Path Prediction (Guideline)
1. Introduction
We utilize collected data from unmanned aerial vehicle (UAV) movements in the x, y, and z axes as input for model training. The Long Short-Term Memory (LSTM) architecture is employed to train the model, and the OSC AIMLFW framework is used as the training model framework. Through this process, a model capable of predicting the path of UAVs is trained, providing a solution for various use cases.
Ensure that the Influx database is operational for this use case, which is based on the OSC AI/ML Framework (Release-J).
2. Suggested Requirements
Getting Started (Start from data insertion)
Step 1. Query influx token
# Search the influx "token" value in below output cat bitnami/influxdb/influxd.bolt | tr -cd "[:print:]"
Step 2. Create “UAVData” bucket (Inside Influx DB container)
influx bucket create -n UAVData -o primary -t <token>
Step 3. Fill the file config (UAV_insert.py)
DATASET_PATH = '/path/to/dataset.csv' # Replace to the UAV dataset path INFLUX_IP = 'localhost' # Influx IP INFLUX_TOKEN = 'VJpoNpqeVnjzvhpPm8jZ' # Influx token
Step 4. Excute the insert processing to insert data into Influx DB
Step 5. Upload UAV_pipeline.ipynb to aiml-notebook and generate a UAV_pipeline.yaml
Step 6. Start a UAV model training job
Step 7. Load UAV model
Step 8. Start model prediction
1. obtain Ingress port for Kserve (kubectl get svc istio-ingressgateway -n istio-system)
2. source uav.sh
File List
UAV_dataset.csv (Download) , (NEW)_UAV_dataset(source)
The file contains collected UAV movement path data.UAV_insert.py (Download)
The file processes the UAV_dataset and inserts the data into InfluxDB.
(Changed required: DATASET_PATH , INFLUX_IP , INFLUX_TOKEN)UAV_pipeline.ipynb (Download)
The file defines the model structure and training process.UAV_deploy.yaml (Download)
The yaml file is used for deploying model inference service.UAV_input.json (Download)
The json file is the sample data for the prediction.UAV_predict.sh (Download)
The script used for excuting the model prediction.
Example
Input:
This input data represents a collection of points in a three-dimensional space, with each point defined by a set of three coordinates corresponding to the x, y, and z axes (After normalization).Example input
UAV_input
Output:
The output should be next xyz-axis path prediction (After normalization).Example output
UAV_output
Contributors
Joseph Thaliath - Samsung
Antony Wang - NTUST MITLab
Jasmine Lee - NTUST MITLab
Tuck-Wai Choong - NTUST MITLab